Search for Vector-Like Quarks with ATLAS Kevin Black Boston University # Higgs Boson - In the Standard Model (SM), elementary particles get a mass by interacting with the Higgs field - The SM matter particles are chiral so an explicit mass term is forbidden by the SM gauge symmetry - Are there other forms of matter? Phys. Lett. B 716 (2012) 1-29 # Context: Heavy Quarks and the Naturalness problem - The existence of a scalar Higgs Boson at 125 GeV is established - Well known theoretical problem that a scalar particle has large corrections to its mass from loop corrections - Is there a principle, symmetry, and/or new particles that render it natural? $$m_{\rm phys}^2 = m_{\rm bare}^2 + g\Lambda^2 \ll \Lambda^2$$ **FINE TUNING** ## Heavier Generations? - Why 3 generations? - Mass hierarchy is accommodated by the SM but not predicted (Higgs Yukawa couplings) - Are there more? # What do we know already? - Higgs boson measurements from the LHC strongly disfavor another chiral generation of quarks - A new heavy chiral quark would influence Higgs production and naively increase the crosssection by ~10 - A new heavy chiral quark would influence the decay and suppress the diphoton decay by a factor of ~100 [Kuflik et al., .., PRL 110 (2013)] #### What is a Vector Like Quark - Unlike SM (chiral) quarks the left and right handed fields transform the same way under SU(2) - They have a Dirac mass without the Higgs $$L_{mass} \sim M(\bar{\Psi}_L \Psi_R + \bar{\Psi}_R \Psi_L)$$ They couple to SM quarks via Yukawa-Like interactions $$L_{Yuk} \sim \frac{\lambda_v}{\sqrt{2}} (q_L \Psi_R + \bar{\Psi}_R q_R)$$ - The couplings depend upon the representation of SU(2) - singlet, doublet, triplet ### **VLQ** Motivation VLQ top-partners can control the Higgs mass instability Arise in many BSM models - composite Higgs - some models SUSY - Extra dimensions ## Large Hadron Collider 20 fb⁻¹ of integrated luminosity recorded and utilized at 8 TeV #### ATLAS Detector - Inner Detector (tracker): Pixels, Silicon Strips, Transition Radiation Detector - Calorimeters: LAr (EM + hadronic forward), TileCal (hadronic) - Forward Detectors: LUCID< ZDZ, ALFA - Muon Spectrometer: Drift Tubes, resistive plate chambers, thin gap chambers, and cathode strip chambers - 4 super-conducting magnets: - Solenoid (ID) + 3 Toroid Magnets for Muon Spectrometer #### Production # Decays - Decays depend on assumed charge and structure (charge 2/3 or 5/3) - singlet, doublet, triplet - Does not obey GIM mechanism - tree level flavor changing neutral currents # Huge Number of Final States | Channel | Multi-leptons | Lepton+jets | Channel | Multi-leptons | Lepton+jets | |--|---|---|--|---|---| | tHWb
tH tZ $(Z \rightarrow jj(bb))$
tH tZ $(Z \rightarrow \nu\nu)$
tH tZ $(Z \rightarrow ll)$ | $2l(\mathrm{OS}) + \mathrm{MET} + 4b$ $2l + \mathrm{MET} + 2j + 4b$ $2l + \mathrm{MET} + 4b$ $4l + \mathrm{MET} + 4b \text{ or } 3l + \mathrm{MET} + 2j + 4b$ | l+ MET+2 j +4 ll +MET+ 4 j +4 ll + 2 j +MET+4 l | tHWb $ tH tZ (Z \to jj(bb)) $ $ tH tZ (Z \to \nu\nu) $ | 4l+MET+ $2b$ or $2l$ (SS)+MET+ $4j$ + $2b4l$ +MET+ $2j$ + $2b$ or $2l$ (SS)+MET+ $6j$ + $2b4l$ +MET+ $2b$ or $2l$ (SS)+MET+ $4j$ + $2b$ | l+MET+6j+2b
l+MET+8j+2b
l+MET+6j+2b | | $tZ tZ (ZZ \rightarrow jj(bb))$ | 2l(OS)+MET+2j+2b | l+MET+ $4j$ + $2b$: | tH tZ ($Z \rightarrow ll$) | 6l+MET+2b or $3l+MET+6j+2b$ | | | tZ tZ (Z $Z \rightarrow \nu \nu$) | 2l(OS)+MET+2b | l+2 j +MET+2 b | tHtH ($H \rightarrow W^+W^-$) | 6l+MET+2b or $3l+MET+6j+2b$ | l+MET+10 j + 2 b | | $tZ tZ (ZZ \rightarrow ll)$ | 4l+MET+ 2b or 3l+2j+MET+2b | La remanda de el | tHtH ($H ightarrow W^+W^-$, $bar{b}$) | 4l+MET+ $4b$ or $2l$ (SS)+MET+ $4j$ + $4b$ | l+MET+6 j + 4 b | | $tHtH (H \rightarrow bb)$ | 2l(OS)+MET+6b | l+MET+2j+6l | | | | | WbWb | 2l(OS)+MET+2b | l+MET+2j+2b | | | | | WbtZ ($Z o jj(bb)$) | 2l+MET+2j+2b | l+MET+4 j +2 b | | | | | WbtZ ($Z \rightarrow \nu \nu$) | 2l+MET+2b | l+MET+2 j +2 b | | | | | WbtZ ($Z ightarrow ll$) | 4l +MET + 2b or 3l +MET + 2j + 2b | | | | | + Single Production Decays! #### Recasting to a Triangle ## ATLAS Strategy - For Run I - - dedicated searches in corners of decay space that are optimized for particular decays eg. tZ, tH,bW - Organize according to lepton multiplicity: single lepton, dilepton (divided into those with Z boson and same sign), and trilepton - Combine the analysis statistically for maximal coverage - CMS type strategy some dedicated searches and some more general inclusive searches # VLQ Analysis - There are many searches that cover different hypothesis and final states: - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ ExoticsPublicResults - I will mostly cover one of these in detail (that my student and I worked on) and then briefly discuss a couple of the other channels and the combination # Z-tag Analysis - Divide Analysis into Dilepton and Trilepton (or more) Channels - Start by reconstructing a Z boson in the opposite sign same flavor channel - Examine variables that are ~ model independent and give good separation between signal and background - Some model dependence in the single production mode #### Kinematic Variables - Main background at preselection stage is Z+jets (low b-jet multiplicity and relatively low pt of Z boson) - Signal has high Pt Z boson and multiple b-jets #### Kinematic Variables - For heavy quark production expect in general high pt objects (as seen in the sum of all reconstructed jets and leptons) - Invariant masses to recapture full or partial exotic quark invariant mass #### Selection Overview | Event selection | | | | | | |---------------------------------|-------------------|-------------------------------------|--|--|--| | Z candidate preselection | | | | | | | ≥ 2 central jets | | | | | | | $p_T(Z) \ge 150 \text{ GeV}$ | | | | | | | Dilepton | channel | Trilepton channel | | | | | = 2 lep | otons | ≥ 3 leptons | | | | | ≥ 2 <i>b</i> -tag | ged jets | ≥ 1 b -tagged jet | | | | | Pair production | Single production | Single production Pair production | | | | | $H_T(jets) \ge 600 \text{ GeV}$ | ≥ 1 fwd. jet | _ ≥ 1 fwd. jet | | | | | Final discriminant | | | | | | | m(Z | (b) | $H_T(jets + leptons)$ | | | | - Dilepton and Trilepton Start with Same event selection and then diverge on lepton and b-jet multiplicity - Exploit then kinematics of process for single production (forward high energy jets) # Data/MC agreement - Use the low H_T region (< 600 GeV) and Z P_T (< 150 GeV) region to compare simulation with data in a region depleted from signal - Note change in signal composition moving from 1 to 2 b-tagged jets # Z PT Reweighting - Notice a slight disagreement in out of the box agreement between Z boson transverse momentum - Use single b-jet tag in order to derive correction for 2 b-jet tag (check 0 b-jet bin for closure) #### Data Driven Correction Two corrections made: Z+jets MC seen to under predict background in the 1,2 | | $Z+ \ge 2$ jets $(N_{\text{tag}}-1)$ | $p_{\rm T}(Z) > 150 {\rm GeV}$ | $H_{\rm T}({\rm jets}) > 600~{\rm GeV}$ | |------------------------------------|--------------------------------------|--------------------------------|---| | Z+light (no p _T corr.) | 24000 ± 1500 | 1940 ± 190 | 104.6 ± 8.6 | | Z +light (p_T corr.) | 23600 ± 1500 | 1700 ± 150 | 89 ± 12 | | Z+bottom (no p _T corr.) | 24100 ± 1700 | 1970 ± 240 | 82.5 ± 8.0 | | Z +bottom (p_T corr.) | 23600 ± 1700 | 1730 ± 160 | 71 ± 11 | | tĒ | 2850 ± 230 | 68 ± 11 | 8.0 ± 2.9 | | Other SM | 1250 ± 370 | 180 ± 60 | 17.9 ± 5.7 | | Total SM (no p _T corr.) | 52200 ± 2300 | 4150 ± 310 | 213 ± 13 | | Total SM (p _T corr.) | 51300 ± 2300 | 3690 ± 230 | 186 ± 16 | Z pt correction ~10% jet $Z P_T < 150 \text{ GeV}$ region by ~15, 20% # Trilepton Data/MC Agreement Agreement Agreement Agreement AGREE ATLAS 350 ATLAS 350 ATLAS 350 ATLAS 350 ATLAS - After third lepton requirement dominated by WZ - Apply a k-factor from NLO program (1.18) and get reasonable agreement in various kinematic variables #### Systematic Errors | Enactional association ((f)), dilentes about | | | | | | | |--|--------|------------|------------|------------|----------|------------| | Fractional uncertainties (%): dilepton channel | | | | | | | | | Z+jets | $t\bar{t}$ | Other bkg. | Total bkg. | $Bar{B}$ | $T\bar{T}$ | | Luminosity | 1.4 | 2.8 | 2.8 | 0.3 | 2.8 | 2.8 | | Cross section | 5.5 | 6.4 | 29 | 0.7 | - | - | | Jet reconstruction | 13 | 10 | 14 | 11 | 2.0 | 2.1 | | b-tagging | 9.1 | 13 | 9.9 | 5.7 | 7.2 | 5.9 | | e reconstruction | 2.9 | 16 | 5.9 | 4.6 | 2.5 | 1.5 | | μ reconstruction | 3.8 | 7.8 | 7.2 | 4.2 | 3.2 | 1.3 | | Z+jets $p_T(Z)$ correction | 9.0 | - | - | 6.5 | - | - | | Z+jets rate correction | 6.9 | - | - | 5.0 | - | - | | MC statistics | 5.0 | 25 | 12 | 5.4 | 2.4 | 2.9 | | Fractional uncertainties (%): trilepton channel | | | | | | | |---|-----|----------------|------------|------------|------------|------------| | | WZ | $t\bar{t} + V$ | Other bkg. | Total bkg. | $B\bar{B}$ | $T\bar{T}$ | | Luminosity | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | | Cross section | 17 | 30 | 8.9 | 21 | - | - | | Jet reconstruction | 5.4 | 1.2 | 8.1 | 3.1 | 4.0 | 1.8 | | b-tagging | 13 | 3.6 | 13 | 6.7 | 5.6 | 5.5 | | e reconstruction | 9.3 | 3.9 | 37 | 11 | 5.9 | 12 | | μ reconstruction | 14 | 3.9 | 18 | 4.2 | 6.2 | 5.7 | | MC statistics | 11 | 3.1 | 27 | 6.6 | 4.8 | 8.3 | Final Variables in Pair Production Hypothesis - Good agreement with data/mc in both dilepton and trilepton analysis - Unfortunately no evidence of pair production # Single Production Results - Single production final selection also consistent with background only hypothesis - Also proceed to set limits # Limits, Limits, Limits # For any branching ratio # Single Production #### W corner of the T Plane - Hadronic W candidate: resolved and merged types. - Other "tight" criteria to exploit high p_T(W) but wide separate between W and b-quarks in signal. - Preselection: = 1 e or μ, ≥ 4 jets (R = 0.4) - ≥ 1 b-tagged jet (70%); also label jet w/ 2nd highest b-tag weight as b-tagged. p_T(b_{1,2}) > 160, 80 GeV. TT→W⁺bW⁻b (600) $\Delta R(l,v)$ ///// Total Bkg unc. Wb+X - ME_T > 20 GeV and ME_T + M_T > 60 GeV - H_T(lep+jets+ME_T) > 800 GeV. arXiv:1505.04306 # W corner of T plane | Selection | Requirements | |-----------------|--| | Preselection | Exactly one electron or muon $E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} + m_{\mathrm{T}}^{W} > 60 \text{ GeV}$ $\geq 4 \text{ jets}, \geq 1 b\text{-tagged jets}$ | | Loose selection | Preselection
\geq 1 $W_{\rm had}$ candidate (type I or type II)
$H_{\rm T} >$ 800 GeV
$p_{\rm T}(b_1) >$ 160 GeV, $p_{\rm T}(b_2) >$ 110 GeV (type I) or $p_{\rm T}(b_2) >$ 80 GeV (type II)
$\Delta R(\ell, \nu) <$ 0.8 (type I) or $\Delta R(\ell, \nu) <$ 1.2 (type II) | | Tight selection | Loose selection $\min(\Delta R(\ell,b_{1,2})) > 1.4, \min(\Delta R(W_{\text{had}},b_{1,2})) > 1.4$ $\Delta R(b_1,b_2) > 1.0 \text{ (type I) or } \Delta R(b_1,b_2) > 0.8 \text{ (type II)}$ $\Delta m < 250 \text{ GeV (type I) [see text for definition]}$ | - Type 1 single jet with P_T> 400 GeV - Type 2 two jets with invariant mass 60-120 GeV, $P_T > 250$ GeV of dijet system $\Delta R(j,j) < 0.8$ #### W corner of T Plane top pair production, differential cross section - Main backgrounds tt+jets, W/Z+jets - Taken from simulation but reweighted based on top and V+jet differential cross-section measurements - Smaller backgrounds (multijet events with misidentified lepton, diboson +jets, and tt+V) Phys. Rev. D 90 (2014) 072004 #### W corner of the T Plane - Assuming BR(Wb) = 100%, exclude m_T < 770 (795) GeV, obs (exp). - Limits also apply to Y(-4/3) quark. arXiv:1505.04306 # H corner of the T plane - Targets HtHt-like final states. Complements Wb+X. - High (5, ≥6) jet and b-jet (2, 3, ≥4) multiplicity. - Study H_T distribution in six categories: Also, divide 4⁺b into high and low M_{bb} (min dR pair) arXiv:1505.04306 #### H corner of T Plane Low S/B categories used to constrain uncertainties (e.g. JES, b-tagging, tt+HF norms) #### Combined Limits - Each analysis designed for somewhat different corner of phase space - Combine limits across the branching ratio plane in both T and B decay hypothesis - Observation slightly better than expected limits ## Projections for Run II and beyond | Collider | Luminosity | Pileup | 3σ evidence | 5σ discovery | 95% CL | | | |------------------------------------|---------------------------|--------|--------------------|---------------------|-------------------|--|--| | top-partner pair production | | | | | | | | | LHC 14 TeV | $300 \; \mathrm{fb^{-1}}$ | 50 | 1340 GeV | $1200~{ m GeV}$ | 1450 GeV | | | | LHC 14 TeV | 3 ab ⁻¹ | 140 | 1580 GeV | 1450 GeV | 1740 GeV | | | | LHC 33 TeV | 3 ab ⁻¹ | 140 | 2750 GeV | 2400 GeV | 3200 GeV | | | | top-partner single production | | | | | | | | | LHC 14 TeV | 300 fb ⁻¹ | 50 | 1275 GoV | 1150 GeV | | | | | LHC 14 TeV | $3 \mathrm{~ab^{-1}}$ | 140 | 1130 GeV | 1000 GeV | | | | | LHC 33 TeV | $3 \mathrm{~ab^{-1}}$ | 140 | 1350 GeV | 1220 GeV | | | | | bottom-partner pair production | | | | | | | | | LHC 14 TeV | $300 \; {\rm fb^{-1}}$ | 50 | 1210 GeV | $1080~\mathrm{GeV}$ | $1330~{ m GeV}$ | | | | LHC 14 TeV | 3 ab ⁻¹ | 140 | 1490 GeV | 1330 GeV | >1500 GeV | | | | LHC 33 TeV | 300 fb ⁻¹ | 50 | $> 1500~{ m GeV}$ | $> 1500~{ m GeV}$ | $> 1500~{ m GeV}$ | | | | Charge 5/3 fermion pair production | | | | | | | | | LHC 14 TeV | 300 fb ⁻¹ | 50 | 1.51 TeV | 1.39 TeV | 1.57 TeV | | | | LHC 14 TeV | $3 \mathrm{~ab^{-1}}$ | 140 | 1.66 TeV | 1.55 TeV | 1.76 TeV | | | | LHC 33 TeV | $3 { m ~ab^{-1}}$ | 140 | 2.50 TeV | 2.35 TeV | 2.69 TeV | | | Note these are SNOWMASS projections (not ATLAS results) arXiv:1311.0299 ### Conclusions - Large program to search for vector like quark in different final states under different production and decay hypothesis - No Evidence for VLQ production at ATLAS - Early Search Topic as increase in energy should quickly surpass run I sensitivity - Check Run I excesses try to remain as broad as possible - Ultimate Run II sensitivity ~ 2 TeV ### H corner of B plane Re-optimize Ht+X analysis for the B plane. Require p_T of leading two b-jets > 150 GeV. Increased importance of 5 jet category compared to the T hypothesis case. ### H corner of B Plane Exclusions for 100% Hb and SU(2) singlet hypotheses. For BR(Hb) = 100%, exclude m_B < 700 (625) GeV, obs (exp). For BR(Hb) ≈ BR(Zb) ≈ 25%, exclude m_B < 735 (635) GeV, obs (exp). ### Same Sign Signature - Same-sign dilepton final state originally motivated by 4W signature from BB & XX. - Later added 3rd lepton channel, and interpreted also for TT. - Challenges: fake leptons and Q mis-Id. H_T [GeV] arxiv:1504.04605 #### arxiv:1504.04605 Definitions of event categories (signal regions) #### SRVLQ6: Exp: 4.3 ± 1.5 Obs: 12 #### SRVLQ7: Exp: 1.1 ± 1.0 Obs: 6 | | Name | | | | | | | | |---|--------------|--|--------|-------|--|--|--|--| | $e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu^{\pm}\mu^{\pm} + eee + ee\mu + e\mu\mu + \mu\mu\mu, N_j \ge 2$ | | | | | | | | | | $400 < H_{\rm T} < 700 GeV$ | $N_b = 1$ | $E_{\mathrm{T}}^{\mathrm{miss}} > 40~\mathrm{GeV}$ | SRVLQ0 | | | | | | | | $N_b = 2$ | | SRVLQ1 | SR4t0 | | | | | | | $N_b \geq 3$ | | SRVLQ2 | SR4t1 | | | | | | | $N_b = 1$ | $40 < E_{\rm T}^{\rm miss} < 100 GeV$ | SRVLQ3 | | | | | | | | | $E_{\rm T}^{\rm miss} \ge 100~GeV$ | SRVLQ4 | | | | | | | $H_{\rm T} \geq 700~GeV$ | $N_b = 2$ | $40 < E_{\rm T}^{\rm miss} < 100 GeV$ | SRVLQ5 | SR4t2 | | | | | | | | $E_{\rm T}^{\rm miss} \ge 100~GeV$ | SRVLQ6 | SR4t3 | | | | | | | $N_b \geq 3$ | $E_{\rm T}^{\rm miss} > 40~{ m GeV}$ | SRVLQ7 | SR4t4 | | | | | Exclusions for SU(2) singlet T and B hypotheses. For BR(Ht) ≈ BR(Zt) ≈ 25%, exclude m_T < 620 (660) GeV, obs (exp). For BR(Hb) ≈ BR(Zb) ≈ 25%, exclude m_B < 590 (690) GeV, obs (exp). arxiv:1504.04605 ### W corner of B plane $$pp \to X\bar{X} \to tW^+\bar{t}W^- \to W^+W^+W^-W^-b\bar{b}$$ - Examine also higher background channels - Also check the one lepton channel in the VLQ interpretation of the 2.5 sigma excess - 12 variable BDT trained to maximize sensitivity arXiv:1505.04306 45 arXiv:1505.04306 ### BDT performance # Limits from B->TW Search single lepton For BR(Hb) ≈ BR(Zb) ≈ 25%, exclude m_T < 640 (505) GeV, obs (exp). For BR(Wt)=100%, exclude m_x < 840 (780) GeV, obs (exp). arXiv:1505.04306 ### Coupling to Light Quarks? - VLQ coupling to light generations: single production from valence quarks. - Search for Wq and Zq resonances. ATLAS-CONF-2012-137 [7 TeV, 4.6/fb] PLB 712 (2012) 22 [7 TeV, 1.0/fb] SS+ 1 b-jet signature still possible w/ BR(cW) ≠ 0.